Grace's Guide To British Industrial History

Registered UK Charity (No. 1154342)

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 167,711 pages of information and 247,105 images on early companies, their products and the people who designed and built them.

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 147,919 pages of information and 233,587 images on early companies, their products and the people who designed and built them.

Lives of George and Robert Stephenson by Samuel Smiles: Part 1: Chapter 1

From Graces Guide

Chapter I. Schemers and Projectors.

IT is easy to understand how rapid transit from place to place should, from the earliest times, have been an object of desire.

The marvellous gift of speed conferred by Fortunatus's Wishing Cap was what all must have envied: it conferred power. It also conferred pleasure. "Life has not many things better than this," said Samuel Johnson as he rolled along in the post-chaise. But it also conferred comfort and well-being; and hence the easy and rapid transit of persons and commodities became in all countries an object of desire in proportion to their growth in civilization.

We have elsewhere [1] endeavoured to describe the obstructions to the progress of society occasioned by the defective internal communications of Britain in early times, which were to a considerable extent removed by the adoption of the canal system, and the improvement of our roads and highways, toward the end of last century. But the progress of industry was so rapid the invention of new tools, machines, and engines so greatly increased the productive wealth of the nation that some forty years since it was found that these roads and canals, numerous and excellent though they might be, were altogether inadequate for the accommodation of the traffic of the country, which was increasing in almost a direct ratio with the increased application of steam power to the purposes of productive industry.

The inventive minds of the nation, always on the alert the "schemers" and the "projectors," to whom society has in all times been so greatly indebted proceeded to apply themselves to the solution of the problem of how the communications of the country were best to be improved; and the result was, that the power of steam itself was applied to remedy the inconveniences which it had caused.

Like most inventions, that of the Steam Locomotive was very gradually made. The idea of it, born in one age, was revived in the ages that followed. It was embodied first in one model, then in another the labours of one inventor being taken up by his successors until at length, after many disappointments and many failures, the practicable working locomotive was achieved.

The locomotive engine was not, however, sufficient for the purposes of cheap and rapid transit. Another expedient was absolutely essential to its success that of the Railway: the smooth rail to bear the load, as well as the steam-engine to draw it.

Expedients were early adopted for the purpose of diminishing friction between the wheels of vehicles and the roads along which they were dragged by horse-power. The Romans employed stone blocks with that object; and the streets of the long-buried city of Pompeii still bear the marks of the ancient Roman chariot wheels, as the stone track for heavy vehicles on our modern London Bridge shows the wheel-marks of the wagons which cross it. These stone blocks were merely a simple expedient to diminish friction, and were the first steps toward a railroad.

The railway proper doubtless originated in the coal districts of the North of England and Wales, where it was found useful in facilitating the transport of coals from the pits to the shipping places. At an early period the coal was carried to the boats in panniers, or in sacks upon horses' backs. Next carts were used, and tram-ways of flag-stone were laid down, along which they were easily hauled. The carts were then converted into wagons, and mounted on four wheels instead of two.

Still farther to facilitate the haulage of the wagons, pieces of planking were laid parallel upon wooden sleepers, or imbedded in the ordinary track. It is said that these wooden rails were first employed by a Mr. Beaumont, a gentleman from the South, who, about the year 1630, adventured in the northern mines with about thirty thousand pounds, and after introducing many improvements in the working of the coal, as well as in the methods of transporting it to the staithes on the river, was ruined by his enterprise, and "within a few Years," to use the words of the ancient chronicler, " he consumed all his Money, and rode Home upon his light Horse." [2] The use of wooden rails gradually extended, and they were laid down between most of the collieries on the Tyne and the places at which the coal was shipped. Roger North, in 1676, found the practice had become extensively adopted, and he speaks of the large sums then paid for way-leave that is, the permission granted by the owners of lands lying between the coal-pits and the river-side to lay down a tram-way for the purpose of connecting the one with the other.

A century later, Arthur Young observed that not only had these roads become greatly multiplied, but formidable works had been constructed to carry them along upon the same level. "The coal wagon-roads from the pits to the water," he says, "are great works, carried over all sorts of inequalities of ground, so far as the distance of nine or ten miles. The tracks of the wheels are marked with pieces of wood let into the road for the wheels of the wagons to run on, by which one horse is enabled to draw, and that with ease, fifty or sixty bushels of coals." [3]Saint Fond, the French traveller, who visited Newcastle in 1791, described the colliery wagon-ways in that neighbourhood as superior to any thing of the kind he had seen. The wooden rails were formed with a rounded upper surface, like a projecting moulding, and the wagon-wheels being made of cast iron, and hollowed in the manner of a metal pulley," readily fitted the rounded surface of the rails. The economy with which the coal was thus hauled to the shipping-places was urged by Saint Fond as an inducement to his own countrymen to adopt a like method of transit. [4]

Similar wagon-roads were early laid down in the coal districts of Wales, Cumberland, and Scotland. At the time of the Scotch rebellion in 1745, a tram-road existed between the Tranent coal pits and the small harbour of Cockenzie, in East Lothian; and a portion of the line was selected by General Cope as a position for his cannon at the battle of Prestonpans.

In these rude wooden tracks we find the germ of the modem railroad. Improvements were gradually made in them. Thus, at some collieries, thin plates of iron were nailed upon their upper surface, for the purpose of protecting the parts most exposed to friction. Cast-iron rails were also tried, the wooden rails having been found liable to rot. The first iron rails are supposed to have been laid down at Whitehaven as early as 1738. This cast iron road was denominated a "plate-way," from the plate-like form in which the rails were cast. In 1767, as appears from the books of the Coalbrookdale Iron Works, in Shropshire, five or six tons of rails were cast, as an experiment, on the suggestion of Mr. Reynolds, one of the partners; and they were shortly after laid down to form a road.

In 1776, a cast-iron tramway, nailed to wooden sleepers, was laid down at the Duke of Norfolk's colliery near Sheffield.

The person who designed and constructed this coal line was Mr. John Curr, whose son has erroneously claimed for him the invention of the cast-iron railway. He certainly adopted it early, and thereby met the fate of men before their age; for his plan was opposed by the labouring people of the colliery, who got up a riot, in which they tore up the road and burned the coal-staith, while Mr. Curr fled into a neighbouring wood for concealment, and lay there for three days and nights, to escape the fury of the populace. [5] The plates of these early tram-ways had a ledge cast on their outer edge to guide the wheel along the road, after the manner shown in the preceding cut.

In 1789, Mr. William Jessop constructed a railway at Loughborough, in Leicestershire, and there introduced the cast-iron edge-rail, with flanches cast upon the tire of the wagon wheels to keep them on the track, instead of having the margin or flanch cast upon the rail itself; and this plan was shortly after adopted in other places. In 1800, Mr. Benjamin Outram, of Little Eaton, Derbyshire (father of the distinguished General Outram), used stone props instead of timber for supporting the ends or joinings of the rails. Thus the use of railroads, in various forms, gradually extended, until they became generally adopted in the mining districts.

Such was the growth of the railroad, which, it will be observed, originated in necessity, and was modified according to experience; progress in this, as in all departments of mechanics, having been .effected by the exertions of many men; one generation entering upon the labours of that which preceded it, and carrying them onward to farther stages of improvement. The invention of the locomotive was in like manner made by successive steps. It was not the invention of one man, but of a succession of men, each working at the proper hour, and according to the needs of that hour; one inventor interpreting only the first word of the problem which his successors were to solve after long and laborious efforts and experiments. "The locomotive is not the invention of one man," said Stephenson at Newcastle, " but of a nation of mechanical engineers." Down to the end of last century, and indeed down almost to our own time, the only power used in haulage was that of the horse. Along the common roads of the country the poor horses were "tearing their hearts out" in dragging cumbersome vehicles behind them, and the transport of merchandise continued to be slow, dear, and in all respects unsatisfactory. Many expedients were suggested with the view of getting rid of the horse. The power of wind was one of the first expedients proposed. It was cheap, though by no means regular. It impelled ships by sea; why should it not be used to impel carriages by land? The first sailing-coach was invented by one Simon Stevinius, or Stevins, a Fleming, toward the end of the sixteenth century.

Pierre Gassendi gives an account of its performances as follows: "Purposing to visit Grotius, Peireskius went to Scheveling that he might satisfy himself of the carriage and swiftness of a coach a few years before invented, and made with that artifice that with expanded sails it would fly upon the shore as a ship upon the sea. He had formerly heard that Count Maurice, a little after his victory at Meuport [1600], had put himself thereinto, together with Francis Mendoza, his prisoner, on purpose to make trial thereof, and that, within two hours, they arrived at Putten, which is distant from Scheveling fourteen leagues, or two-and-forty miles. He had, therefore, a mind to make the experiment himself, and he would often tell us with what admiration he was seized when he was carried with a quick wind and yet perceived it not, the coach's motion being equally quick." [6] The sailing-coach, however, was only a curiosity. As a practicable machine, it proved worthless, for the wind could not be depended upon for land locomotion. The coach could not tack as the ship did. Sometimes the wind did not blow at all, while at other times it blew a hurricane. After being used for some time as a toy, the sailing-coach was given up as impracticable, and the project speedily dropped out of sight."

But, strange to say, the expedient of driving coal-wagons by the wind was revived in Wales about a century later. On this occasion, Sir Humphry Mackworth, an ingenious coal-miner at Neath, was the projector. Waller, in his "Essay on Mines," published in 1698, takes the opportunity of eulogizing Sir Humphry's "new sailing-wagons, for the cheap carriage of his coal to the water-side, whereby one horse does the work of ten at all times; but when any wind is stirring (which is seldom wanting near the sea), one man and a small sail do the work of twenty." [7] It does not, however, appear that any other coal-owner had the courage to follow Sir Humphry's example, and the sailing-wagon was forgotten until, after the lapse of another century, it was revived by Mr. Edgeworth.

The employment of steam-power as a means of land locomotion was the subject of much curious speculation long before any practical attempt was made to carry it into effect. The merit of promulgating the first idea with reference to it probably belongs to no other than the great Sir Isaac Newton. In his "Explanation of the Newtonian Philosophy," written in 1680, he figured a spherical generator, supported on wheels, and provided with a seat for a passenger in front, and a long jet-pipe behind, and stated that "the whole is to be mounted on little wheels, so as to move easily on a horizontal plane, and if the hole, or jet-pipe, be opened, the vapour will rush out violently one way, and the wheels and the ball at the same time will be carried the contrary way." This, it will be observed, was but a modification of the earliest known steam-engine, or (Aeolipile, of Hero of Alexandria.

It is not believed that Sir Isaac Newton ever made any experiment of his proposed method of locomotion, or did more than merely throw out the idea for other minds to work upon.

The idea of employing steam in locomotion was revived from time to time, and formed the subject of much curious speculation. About the middle of last century we find Benjamin Franklin, then agent in London for the United Provinces of America, Matthew Boulton, of Birmingham, and Erasmus Darwin, of Lichfield, engaged in a correspondence relative to steam as a motive power. Boulton had made a model of a fire-engine, which he sent to London for Franklin's inspection; and though the original purpose for which the engine had been contrived was the pumping of water, it was believed to be practicable to employ it also as a means of locomotion. Franklin was too much occupied at the time by grave political questions to pursue the subject; but the sanguine and speculative mind of Erasmus Darwin was inflamed by the idea of a "fiery chariot," and he pressed his friend Boulton to prosecute the contrivance of the necessary steam machine. [8]

Erasmus Darwin was in many respects a remarkable man. In his own neighbourhood he was highly esteemed as a physician, and by many intelligent readers of his day he was greatly prized as a poet. Horace Walpole said of his "Botanic Garden" that it was "the most delicious poem upon earth," and he declared that he "could read it over and over again forever." The doctor was accustomed to write his poems with a pencil on little scraps of paper while riding about among his patients in his "sulky." The vehicle, which was worn and bespattered outside, had room within it for the doctor and his appurtenances only. On one side of him was a pile of books reaching from the floor to nearly the front window of the carriage, while on the other was a hamper containing fruit and sweetmeats, with a store of cream and sugar, with which the occupant regaled himself during his journey.

Lashed on to the place usually appropriated to the "boot" was a large pail for watering the horses, together with a bag of oats and a bundle of hay. Such was the equipage of a fashionable country physician of the last century.

Dr. Darwin was a man of large and massive person, bearing a rather striking resemblance to his distinguished townsman, Dr. Johnson, in manner, deportment, and force of character. He was full of anecdote, and his conversation was most original and entertaining. He was a very outspoken man, vehemently enunciating theories which some thought original and others dangerous. As he drove through the country in his "sulky," his mind teemed with speculation on all subjects, from zoonomy, botany, and physiology, to physics, aesthetics, and mental philosophy.

Though his speculations were not always sound, they were clever and ingenious, and, at all events, they had the effect of setting other minds a-thinking and speculating on science and the methods for its advancement. From his "Loves of the Plants" afterward so cleverly parodied by George Canning in his "Loves of the Triangles" it would appear that the doctor even entertained a theory of managing the winds by a little philosophic artifice. His scheme of a steam locomotive was of a more practical character. This idea, like so many others, first occurred to him in his "sulky." "As I was riding home yesterday," he wrote to his friend Boulton in the year 1765, "I considered the scheme of the fiery chariot, and the longer I contemplated this favourite idea, the more practicable it appeared to me. I shall lay my thoughts before you, crude and undigested though they may appear to be, telling you as well what I thought would not do as what would do, as by those hints you may be led into various trains of thinking upon this subject, and by that means (if any hints can assist your genius, which, without hints, is above all others I am acquainted with) be more likely to improve or disapprove. And as I am quite mad of this scheme, I beg you will not mention it, or show this paper to Wyat or any body.

"These things are required: 1st, a rotary motion; 2d, easily altering its direction to any other direction; 3d, to be accelerated, retarded, destroyed, revived instantly and easily; 4th, the bulk, the weight, and expense of the machine to be as small as possible in proportion to its use." [9]

He then goes on to throw out various suggestions as to the form and arrangement of the machine, the number of wheels on which it was to run, and the mode of applying the power. The text of this letter is illustrated by rough diagrams, showing a vehicle mounted on three wheels, the foremost or guiding wheel being under the control of the driver; but in a subsequent passage he says, "I think four wheels will be better." "Let there be two cylinders," he proceeds. "Suppose one piston up, and the vacuum made under it by the jet cTeaufroid. That piston can not yet descend because the cock is not yet opened which admits the steam into its antagonist cylinder. Hence the two pistons are in equilibrio, being either of them pressed by the atmosphere. Then I say, if the cock which admits the steam into the antagonist cylinder be opened gradually and not with a jerk, that the first-mentioned [piston in the] cylinder will descend gradually and not less forcibly. Hence, by the management of the steam cocks, the motion may be accelerated, retarded, destroyed, revived instantly and easily. And if this answers in practice as it does in theory, the machine can not fail of success! Eureka!

"The cocks of the cold water may be moved by the great work, but the steam cocks must be managed by the hand of the charioteer, who also directs the rudder-wheel. [Then follow his rough diagrams.] The central wheel ought to have been under the rollers, so as it may be out of the way of the boiler." [10]

After farther explaining himself, he goes on to say: "If you could learn the expense of coals to a common fire-engine and the weight of water it draws, some certain estimate may be made if such a scheme as this would answer. Pray don't show Wyat this scheme, for if you think it feasible and will send me a critique upon it, I will certainly, if I can get somebody to bear half the expense with me, endeavour to build a fiery chariot, and, if it answers, get a patent. If you choose to be partner with me in the profit, and expense, and trouble, let me know, as I am determined to execute it if you approve of it.

"Please to remember the pulses of the common fire-engines, and say in what manner the piston is so made as to keep out the air in its motion. By what way is the jet d'eaufroidlet out of the cylinder? How full of water is the boiler? How is it supplied, and what is the quantity of its waste of water?" It will be observed from these remarks that the doctor's notions were of the crudest sort, and, as he obviously contemplated but a modification of the Newcomen engine, then chiefly employed in pumping water from mines, the action of which was slow, clumsy, and expensive, the steam being condensed by injection of cold water, it is clear that, even though Boulton had taken up and prosecuted Darwin's idea, it could not have issued in a practicable or economical working locomotive.

But, although Darwin himself his time engrossed by his increasing medical practice proceeded no farther with his scheme of a "fiery chariot," he succeeded in inflaming the mind of his young friend, Richard Lovell Edgeworth, who had settled for a time in his neighbourhood, and induced him to direct his attention to the introduction of improved means of locomotion by steam.

In a Better written by Dr. Small to Watt in 1768, we find him describing Edgeworth as "a gentleman of fortune, young, mechanical, and indefatigable, who has taken a resolution to move land and water carriages by steam, and has made considerable progress in the short space of time that he has devoted to the study." One of the first-fruits of Edgeworth's investigations was his paper "On Railroads," which he read before the Society of Arts in 1768, and for which he was awarded the society's gold medal.

He there proposed that four iron railroads be laid down on one of the great roads out of London; two for carts and wagons, and two for light carriages and stage-coaches. The post-chaises and gentlemen's carriages might, he thought, be made to go at eight miles an hour, and the stage-coaches at six miles an hour, drawn by a single horse. He urged that such a method of transport would be attended with great economy of power and consequent cheapness. Many years later, in 1802, he published his views on the same subject in a more matured form. By that time Watt's steam-engine had come into general use, and he suggested that small stationary engines should be fixed along his proposed railroad, and made, by means of circulating chains, to draw the carriages along with a great diminution of horse labour and expense.

It is creditable to Mr. Edgeworth's forethought that both the models proposed by him have since been adopted. Horse-traction of carriages on railways is now in general use in the towns of the United States; and omnibuses on the same principle regularly ply between the Place de la Concorde at Paris and St. Cloud, both being found highly convenient for the public, and profitable to the proprietors. The system of working railways by fixed engines was also regularly employed on some lines in the infancy of the railway system, though it has since fallen into disuse, in consequence of the increased power given to the modern locomotive, which enables it to surmount gradients formerly considered impracticable.

Besides his speculations on railways worked by horse and steam power, Mr. Edgeworth unconscious of the early experiments of Stevins and Mackworth made many attempts to apply the power of the wind with the same object. It is stated in his "Memoirs" that he devoted himself to locomotive traction by various methods for a period of about forty years, during which he made above a hundred working models, in a great variety of forms; and though none of his schemes were attended with practical success, he adds that he gained far more in amusement than he lost by his unsuccessful labours. "The only mortification that affected me," he says, "was my discovery, many years after I had taken out my patent [for the sailing-carriage], that the rudiments of my whole scheme were mentioned in an obscure memoir of the French Academy." The sailing-wagon scheme, as revived by Mr. Edgeworth, was doubtless of a highly ingenious character, though it was not practicable. One of his expedients was a portable railway, of a kind somewhat similar to that since revived by Mr. Boydell. Many experiments were tried with the new wagons on Hare Hatch Common, but they were attended with so much danger when the wind blew strong the vehicles seeming to fly rather than roll along the ground that farther experiments were abandoned, and Mr. Edgeworth himself at length came to the conclusion that a power so uncertain as that of the wind could never be relied upon for the safe conduct of ordinary traffic. His thoughts finally settled on steam as the only practicable power for this purpose; but, though his enthusiasm in the cause of improved transit of persons and of goods remained unabated, he was now too far advanced in life to prosecute his investigations in that direction. When an old man of seventy he wrote to James Watt (7th August, 1813): "I have always thought that steam would become the universal lord, and that we should in time scorn post-horses. An iron railroad would be a cheaper thing than a road on the common construction. Four years later he died, and left the problem, which he had nearly all his life been trying ineffectually to solve, to be worked out by younger men.

Dr. Darwin had long before preceded him into the silent land. Down to his death in 1802, Edgeworth had kept up a continuous correspondence with him on his favourite topic; but it does not appear that Darwin ever revived his project of the "fiery chariot." He was satisfied to prophesy its eventual success in the lines which are perhaps more generally known than any he has written for, though Horace Walpole declared that he could "read the Botanic Garden over and over again forever," the poetry of Darwin is now all but forgotten. The following was his prophecy, published in 1791, before any practical locomotive or steam-boat had been invented:

"Soon shall thy arm, unconquered steam, afar
Drag the slow barge, or drive the rapid car;
Or on wide waving wings expanded bear
The flying chariot through the fields of air.
Fair crews triumphant, leaning from above,
Shall wave their flutt'ring kerchiefs as they move; Or warrior bands alarm the gaping crowd,
And armies shrink beneath the shadowy cloud."

The prophecy embodied in the first two lines of the passage has certainly been fulfilled, but the triumph of the steam balloon has yet to come.

See Also

Loading...

Sources of Information

  1. "Lives of the Engineers," vols. i. and ii.
  2. "Six Months' Tour," vol. iii., 9.
  3. Harleian MSS., vol. iii., 269.
  4. "Travels in England, Scotland, and the Hebrides," vol. i., 142.
  5. "Railway Locomotion and Steam Navigation, their Principles and Practice." By John Curr. London, 1847.
  6. A curious account of this early project is to be found in the library of the British Museum, under the name "Stevin, 1652."
  7. The writer adds " I believe he (Sir Humphry Mackworth) is the first gentleman in this part of the world that hath set up sailing engines on land, driven by the wind; not for any curiosity or vain applause, but for real profit; whereby he could not fail of Bishop Malkin's blessing on his undertakings, in case he Avere in a capacity to bestow it."
  8. See farther, "Lives of the Engineers," vol. iv., Boulton and Watt, p. 182-4.
  9. Soho MSS.
  10. Soho MSS. Ibid