Grace's Guide To British Industrial History

Registered UK Charity (No. 1154342)

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 167,711 pages of information and 247,105 images on early companies, their products and the people who designed and built them.

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 147,919 pages of information and 233,587 images on early companies, their products and the people who designed and built them.

Lives of George and Robert Stephenson by Samuel Smiles: Part 2: Chapter 7

From Graces Guide

Chapter VII. George Stephenson’s farther improvements in the Locomotive. The Hetton railway. Robert Stephenson as viewer’s apprentice and student

STEPHENSON'S experiments on fire-damp, and his labours in connection with the invention of the safety-lamp, occupied but a small portion of his time, which was necessarily devoted, for the most part, to the ordinary business of the colliery. From the day of his appointment as enginewright, one of the subjects which particularly occupied his attention was the best practical method of winning and raising the coal. Nicholas Wood has said of him that he was one of the first to introduce steam machinery underground with that object. Indeed, the Killingworth mines came to be regarded as the models of the district; and when Mr. Robert Bald, the celebrated Scotch mining engineer, was requested by Dr. (afterward Sir David) Brewster to prepare the article "Mine" for the "Edinburg Encyclopaedia," he proceeded to Killingworth principally for the purpose of examining Stephenson's underground machinery. Mr. Bald has favoured us with an account of his visit made with that object in 1818, and he states that he was much struck with the novelty, as well as the remarkable efficiency of Stephenson's arrangements, especially in regard to what is called the nnderdip working.

"I found," he says, "that a mine had been commenced near the main pit-bottom, and carried forward down the dip or slope of the coal, the rate of dip being about one in twelve; and the coals were drawn from the dip to the pit-bottom by the steam machinery in a very rapid manner. The water which oozed from the upper winning was disposed of at the pit-bottom in a barrel or trunk, and was drawn up by the power of the engine which worked the other machinery. The dip at the time of my visit was nearly a mile in length, but has since been greatly extended. As I was considerably tired by my wanderings in the galleries, when I arrived at the forehead of the dip, Mr. Stephenson said to me, 'You may very speedily be carried up to the rise by laying yourself flat upon the coal-baskets,' which were laden and ready to be taken up the incline. This I at once did, and was straightway wafted on the wings of fire to the bottom of the pit, from whence I was borne swiftly up to the light by the steam machinery on the pit-head."

The whole of the working arrangements seemed to Mr. Bald to be conducted in the most skilful and efficient manner, reflecting the highest credit on the colliery engineer.

Besides attending to the underground arrangements, the improved transit of the coals above ground from the pit-head to the shipping-place demanded an increasing share of Stephenson's attention. Every day's experience convinced him that the locomotive constructed by him after his patent of the year 1815 was far from perfect, though he continued to entertain confident hopes of its complete eventual success. He even went so far as to say that the locomotive would yet supersede every other traction power for drawing heavy loads. It is true, many persons continued to regard his travelling engine as little better than a dangerous curiosity; and some, shaking their heads, predicted for it "a terrible blow-up some day." Nevertheless, it was daily performing its work with regularity, dragging the coal-wagons between the colliery and the staiths, and saving the labour of many men and horses.

There was not, however, so marked a saving in the expense of haulage as to induce the colliery masters to adopt locomotive power generally as a substitute for horses. How it could be improved, and rendered more efficient as well as economical, was constantly present to Stephenson's mind. He was fully conscious of the imperfections both in the road and the engine, and gave himself no rest until he had brought the efficiency of both up to a higher point. Thus he worked his way inch by inch, slowly but surely, and every step gained was made good as a basis for farther improvements.

At an early period of his labours, or about the time when he had completed his second locomotive, he began to direct his particular attention to the state of the Road, perceiving that the extended use of the locomotive must necessarily depend in a great measure upon the perfection, solidity, continuity, and smoothness of the way along which the engine travelled. Even at that early period he was in the habit of regarding the road and the locomotive as one machine, speaking of the Rail and the Wheel as "Man and Wife." All railways were at that time laid in a careless and loose manner, and great inequalities of level were allowed to occur without much attention being paid to repairs. The consequence was a great loss of power, as well as much wear and tear of the machinery, by the frequent jolts and blows of the wheels against the rails. Stephenson's first object, therefore, was to remove the inequalities produced by the imperfect junction between rail and rail.

At that time (1816) the rails were made of cast iron, each rail being about three feet long; and sufficient care was not taken to maintain the points of junction on the same level. The chairs, or cast-iron pedestals into which the rails were inserted, were flat at the bottom, so that whenever any disturbance took place in the stone blocks or sleepers supporting them, the flat base of the chair upon which the rails rested being tilted by unequal subsidence, the end of one rail became depressed, while that of the other was elevated. Hence constant jolts and shocks, the reaction of which very often caused the fracture of the rails, and occasionally threw the engine off the road.

To remedy this imperfection, Mr. Stephenson devised a new chair, with an entirely new mode of fixing the rails therein. Instead of adopting the butt-joint which had hitherto been used in all cast-iron rails, he adopted the half-lap jointly which means the rails extended a certain distance over each other at the ends like a scarf-joint. These ends, instead of resting on the flat chair, were made to rest upon the apex of a curve forming the bottom of the chair. The supports were also extended from three feet to three feet nine inches or four feet apart. These rails were accordingly substituted for the old cast-iron plates on the Killingworth Colliery Railway, and they were found to be a very great improvement on the previous system, adding both to the efficiency of the horse-power (still used on the railway) and to the smooth action of the locomotive engine, but more particularly increasing the efficiency of the latter.

This improved form of the rail and chair was embodied in a patent taken out in the joint names of Mr. Losh, of Newcastle, iron founder, and of Mr. Stephenson, bearing date the 30th of September, 1816. Mr. Losh being a wealthy, enterprising iron manufacturer, and having confidence in George Stephenson and his improvements, found the money for the purpose of taking out the patent, which in those days was a very costly as well as troublesome affair. At the same time, Mr. Losh guaranteed Stephenson a salary of £100 per annum, with a share in the profits arising from his inventions, conditional on his attending at the Walker Ironworks two days a week an arrangement to which the owners of the Killingworth Colliery cheerfully gave their sanction.

The specification of 1816 included various important improvements in the locomotive itself. The wheels of the engine were improved, being altered from cast to malleable iron, in whole or in part, by which they were made lighter as well as more durable and safe. The patent also included the ingenious and original contrivance by which the steam generated in the boiler was made to serve as a substitute for springs an expedient already explained in a preceding chapter.

The result of the actual working of the new locomotive on the improved road amply justified the promises held forth in the specification. The traffic was conducted with greater regularity and economy, and the superiority of the engine, as compared with horse traction, became still more marked. And it is a fact worthy of notice, that the identical engines constructed by Stephenson in 1816 are to this day in regular useful work upon the Killingworth Railway, conveying heavy coal-trains at the speed of between five and six miles an hour, probably as economically as any of the more perfect locomotives now in use.

George Stephenson's endeavours having been attended with such marked success in the adaptation of locomotive power to railways, his attention was called by many of his friends, about the year 1818, to the application of steam to travelling on common roads.

It was from this point, indeed, that the locomotive had started, Trevithick's first engine having been constructed with this special object. Stephenson's friends having observed how far behind he had left the original projector of the locomotive in its application to railroads, perhaps naturally inferred that he would be equally successful in applying it to the purpose for which Trevithick and Vivian had intended their first engine. But the accuracy with which he estimated the resistance to which loads were exposed on railways, arising from friction and gravity, led him at a very early stage to reject the idea of ever applying steam-power economically to common road travelling.

In October, 1818, he made a series of careful experiments, in conjunction with Mr. Nicholas Wood, on the resistance to which carriages were exposed on railways, testing the results by means of a dynamometer of his own contrivance. The series of practical observations made by means of this instrument were interesting, as the first systematic attempt to determine the precise amount of resistance to carriages moving along railways. It was then for the first time ascertained by experiment that the friction was a constant quantity at all velocities. Although this theory had long before been developed by Yince and Coulomb, and was well known to scientific men as an established truth, yet, at the time when Stephenson made his experiments, the deductions of philosophers on the subject were neither believed in nor acted upon by practical engineers. To quote again from the MS. account supplied to the author by Robert Stephenson for the purposes of his father's "Life:" "It was maintained by many that the results of the experiments led to the greatest possible mechanical absurdities. For instance, it was maintained that, if friction were constant at all velocities upon a level railway, when once a power was applied to a carriage which exceeded the friction of that carriage by the smallest possible amount, that same small excess of power would be able to convey the carriage along a level railway at all conceivable velocities.

When this position was put by those who opposed the conclusions at which my father had arrived, he felt great hesitation in maintaining his own views; for it appeared to him at first sight really to be as it was put by his opponents an absurdity. Frequent repetition, however, of the experiments to which I have alluded, left no doubt upon his mind that his conclusion that friction was uniform at all velocities was a fact which must be received as positively established; and he soon afterward boldly maintained that that which was an apparent absurdity was, instead, a necessary consequence. I well remember the ridicule that was thrown upon this view by many of those persons with whom he was associated at the time. Nevertheless, it is undoubted, that, could you practically be always applying a power in excess of the resistance, a constant increase of velocity would of necessity follow without any limit. This is so obvious to most professional men of the present day, and is now so axiomatic, that I only allude to the discussion which took place when these experiments of my father were announced for the purpose of showing how small was the amount of science at that time blended with engineering practice. A few years afterward, an excellent pamphlet was published by Mr. Silvester on this question; he took up the whole subject, and demonstrated in a very simple and beautiful manner the correctness of all the views at which my father had arrived by his course of experiments.

"The other resistances to which carriages were exposed were also investigated experimentally by my father. He perceived that these resistances were mainly three the first being upon the axles of the carriage; the second, which may be called the rolling resistance, being between the circumference of the wheel and the surface of the rail; and the third being the resistance of gravity.

"The amount of friction and gravity he accurately ascertained; but the rolling resistance was a matter of greater difficulty, for it was subject to great variation. He, however, satisfied himself that it was so great, when the surface presented to the wheel was of a rough character, that the idea of working steam-carriages economically on common roads was out of the question. Even so early as the period alluded to he brought his theoretical calculations to a practical test; he scattered sand upon the rails when an engine was running, and found that a small quantity was quite sufficient to retard and even stop the most powerful locomotive engine that he had at that time made. And he never failed to urge this conclusive experiment upon the attention of those who were wasting their money and time upon the vain attempt to apply steam to common roads.

"The following were the principal arguments which influenced his mind to work out the use of the locomotive in a directly opposite course to that pursued by a number of ingenious inventors, who, between 1820 and 1836, were engaged in attempting to apply steam-power to turnpike roads. Having ascertained that resistance might be taken as represented by 10 lbs. to a ton weight on a level railway, it became obvious to him that so small a rise as 1 in 100 would diminish the useful effort of a locomotive by upward of fifty per cent. This fact called my father's attention to the question of gradients in future locomotive lines. He then became convinced of the vital importance, in an economical point of view, of reducing the country through which a railway was intended to pass to as near a level as possible. This originated in his mind the distinctive character of railway works as contradistinguished from all other roads; for in railroads he early contended that large sums would be wisely expended in perforating barriers of hills with long tunnels, and in raising low ground with the excess cut down from the adjacent high ground. In proportion as these views fixed themselves upon his mind, and were corroborated by his daily experience, he became more and more convinced of the hopelessness of applying steam locomotion to common roads; for every argument in favour of a level railway was an argument against the rough and hilly course of a common road. He never ceased to urge upon the patrons of road steam-carriages that if, by any amount of ingenuity, an engine could be made which could by possibility traverse a turnpike road at a speed at least equal to that obtainable by horsepower, and at a less cost, such an engine, if applied to the more perfect surface of a railway, would have its efficiency enormously enhanced. For instance, he calculated that if an engine had been constructed, and had been found to travel uniformly between London and Birmingham at an average speed of 10 miles an hour conveying, say, 20 or 30 passengers at a cost of 1s. per mile, it was clear that the same engine, if applied to a railway, instead of conveying 20 or 30 people, would have conveyed 200 or 300 people, and instead of a speed of 10 or 12 miles an hour, a speed of at least 30 to 40 miles an hour would have been obtained."

At this day it is difficult to understand how the sagacious and strong common-sense views of Stephenson on this subject failed to force themselves sooner upon the minds of those who were persisting in their vain though ingenious attempts to apply locomotive power to ordinary roads. For a long time they continued to hold with obstinate perseverance to the belief that for such purposes a soft road was better than a hard one a road easily crushed better than one incapable of being crushed; and they held to this after it had been demonstrated in all parts of the mining districts that iron tram-ways were better than paved roads. But the fallacy that iron was incapable of adhesion upon iron continued to prevail, and the projectors of steam-travelling on common roads only shared in the common belief. They still considered that roughness of surface was essential to produce "bite," especially in surmounting acclivities; the truth being that they confounded roughness of surface with tenacity of surface and contact of parts, not perceiving that a yielding surface which would adapt itself to the tread of the wheel could never become an unyielding surface to form a fulcrum for its progression.

Although Stephenson's locomotive engines were in daily use for many years on the Killingworth Railway, they excited comparatively little interest. They were no longer experimental, but had become an established tractive power. The experience of years had proved that they worked more steadily, drew heavier loads, and were, on the whole, considerably more economical than horses. Nevertheless, eight years passed before another locomotive railway was constructed and opened for the purposes of coal or other traffic.

It is difficult to account for this early indifference on the part of the public to the merits of the greatest mechanical invention of the age. Steam-carriages were exciting much interest, and numerous and repeated experiments were made with them. The improvements effected by M'Adam in the mode of constructing turnpike roads were the subject of frequent discussions in the Legislature, on the grants of public money being proposed, which were from time to time made to him. Yet here at Killingworth, without the aid of a farthing of government money, a system of road locomotion had been in existence since 1814, which was destined, before many years, to revolutionize the internal communications of England and of the world, but of which the English public and the English government as yet knew nothing.

But Stephenson had no means of bringing his important invention prominently under the notice of the public. He himself knew well its importance, and he already anticipated its eventual general adoption; but, being an unlettered man, he could not give utterance to the thoughts which brooded within him on the subject. Killingworth Colliery lay far from London, the centre of scientific life in England. It was visited by no savans nor literary men, who might have succeeded in introducing to notice the wonderful machine of Stephenson. Even the local chroniclers seem to have taken no notice of the Killingworth Railway.

The "Puffing Billy" was doing its daily quota of hard work, and had long ceased to be a curiosity in the neighbourhood. Blenkinsop's clumsier and less successful engine which has long since been disused, while Stephenson's Killingworth engines continue working to this day excited far more interest, partly, perhaps, because it was close to the large town of Leeds, and used to be visited by strangers as one of the few objects of interest in that place. Blenkinsop was also an educated man, and was in communication with some of the most distinguished personages of his day on the subject of his locomotive, which thus obtained considerable celebrity.

The first engine constructed by Stephenson to order, after the Killingworth model, was made for the Duke of Portland in 1817, for use upon his tram-road, about ten miles long, extending from Kilmarnock to Troon, in Ayrshire. It was employed to haul the coals from the duke's collieries along the line to Troon harbour.

Its use was, however, discontinued in consequence of the frequent breakages of the cast-iron rails, by which the working of the line was interrupted, and accordingly horses were again employed as before.[1] There seemed, indeed, to be so small a prospect of introducing the locomotive into general use, that Stephenson perhaps conscious of the capabilities within him again recurred to his old idea of emigrating to the United States. Before entering as sleeping partner in a small foundry at Forth Banks, Newcastle, managed by John Burrell\Mr. John Burrell, he had thrown out the suggestion to the latter that it would be a good speculation for them to emigrate to North America, and introduce steam-boats on the great inland lakes there. The first steamers were then plying upon the Tyne before his eyes, and he saw in them the germ of a great revolution in navigation. It occurred to him that the great lakes of North America presented the finest field for trying their wonderful powers. He was an engineer, and Mr. Burrell was an iron-founder; and between them, he thought they might strike out a path to fortune in the mighty West. Fortunately, this idea remained a mere speculation so far as Stephenson was concerned, and it was left to others to do what he had dreamed of achieving.

After all his patient waiting, his skill, industry, and perseverance were at length about to bear fruit. In 1819, the owners of the Hetton Colliery, in the county of Durham, determined to have their wagon-way altered to a locomotive railroad. The result of the working of the Killingworth Railway had been so satisfactory that they resolved to adopt the same system. One reason why an experiment so long continued and so successful as that at Killingworth should have been so slow in producing results perhaps was, that to lay down a railway and furnish it with locomotives, or fixed engines where necessary, required a very large capital, beyond the means of ordinary coal-owners; while the small amount of interest felt in railways by the general public, and the supposed impracticability of working them to a profit, as yet prevented the ordinary capitalists from venturing their money in the promotion of such undertakings. The Hetton Coal Company were, however, possessed of adequate means, and the local reputation of the Killingworth enginewright pointed him out as the man best calculated to lay out their line and superintend their works. They accordingly invited him to act as the engineer of the proposed railway.

Being in the service of the Killingworth Company, Stephenson felt it necessary to obtain their permission to enter upon this new work. This was at once granted. The best feeling existed between him and his employers, and they regarded it as a compliment that their colliery engineer should be selected for a work so important as the laying down of the Hetton Railway, which was to be the longest locomotive line that had, up to that time, been constructed in the neighbourhood. Stephenson accepted the appointment, his brother Robert acting as resident engineer and personally superintending the execution of the works.

The Hetton Railway extended from the Hetton Colliery, situated about two miles south of Houghton-le-Spring, to the ship places on the banks of the Wear, near Sunderland. Its length was about eight miles; and in its course it crossed Warden Law, one of the highest hills in the district. The character of the country forbade the construction of a flat line, or one of comparatively easy gradients, except by the expenditure of a much larger capital than was placed at Stephenson's command. Heavy works could not be executed; it was therefore necessary to form the line with but little deviation from the natural conformation of the district which it traversed, and also to adapt the mechanical methods employed for its working to the character of the gradients, which in some places were necessarily heavy.

Although George Stephenson had, with every step made toward its increased utility, become more and more identified with the success of the locomotive engine, he did not allow his enthusiasm to carry him away into costly mistakes. He carefully drew the line between the cases in which the locomotive could be usefully employed and those in which stationary engines were calculated to be more economical. This led him, as in the instance of the Hetton Railway, to execute lines through and over rough countries, where gradients within the powers of the locomotive engine of that day could not be secured, employing in their stead stationary engines where locomotives were not practicable. In the present case, this course was adopted by him most successfully. On the original Hetton line there were five self-acting inclines the full wagons drawing the empty ones up and two inclines worked by fixed reciprocating engines of sixty-horse power each. The locomotive travelling engine, or "the iron horse," as the people of the neighbourhood then styled it, worked the rest of the line.

On the day of the opening of the Hetton Railway, the 18th of November, 1822, crowds of spectators assembled from all parts to witness the first operations of this ingenious and powerful machinery, which was entirely successful. On that day five of Stephenson's locomotives were at work upon the railway, under the direction of his brother Robert; and the first shipment of coal was then made by the Hetton Company at their new staiths on the Wear. The speed at which the locomotives travelled was about four miles an hour, and each engine dragged after it a train of seventeen wagons weighing about sixty-four tons.

While thus advancing step by step attending to the business of the Killingworth Colliery, and laying out railways in the neighbourhood he was carefully watching over the education of his son. We have already seen that Robert was sent to school at Newcastle, where he remained about four years. While Robert was at school, his father, as usual, made his son's education instrumental to his own. He entered him a member of the Newcastle Literary and Philosophical Institute, the subscription to which was three guineas a year. Robert spent much of his leisure hours there, reading and studying; and when he went home in the afternoons, he was accustomed to carry home with him a volume of the "Repertory of Arts and Sciences," or of some work on practical science, which furnished the subject of interesting reading and discussion in the evening hours. Both father and son were always ready to acknowledge the great advantages they had derived from the use of so excellent a library of books; and, toward the close of his life, the latter, in recognition of his debt of gratitude to the institution, contributed a large sum for the purpose of clearing off the debt, but conditional on the animal subscription being reduced to a guinea, in order that the usefulness of the Institute might be extended.

Robert left school in the summer of 1819, and was put apprentice to Mr. Nicholas Wood, the head viewer at Killingworth, to learn the business of the colliery. He served in that capacity for about three years, during which time he became familiar with most departments of underground work. His occupation was not unattended with peril, as the following incident will show.

Though the use of the Geordy lamp had become general in the Killingworth pits, and the workmen were bound, under a penalty of half a crown, not to use a naked candle, it was difficult to enforce the rule, and even the masters themselves occasionally broke it. One day Nicholas Wood, the head viewer, Moodie, the under viewer, and Robert Stephenson, were proceeding along one of the galleries, Wood with a naked candle in his hand, and Robert following him with a lamp. They came to a place where a fall of stones from the roof had taken place, on which Wood, who was first, proceeded to clamber over the stones, holding high the naked candle. He had nearly reached the summit of the heap, when the fire-damp, which had accumulated in the hollow of the roof, exploded, and instantly the whole party were blown down, and the lights extinguished. They were a mile from the shaft, and quite in the dark. There was a rush of the work-people from all quarters toward the shaft, for it was feared that the fire might extend to more dangerous parts of the pit, where, if the gas had exploded, every soul in the mine must inevitably have perished. Robert Stephenson and Moodie, on the first impulse, ran back at full speed along the dark gallery leading to the shaft, coming into collision, on their way, with the hind quarters of a horse stunned by the explosion. When they had gone half way, Moodie halted, and bethought him of Nicholas Wood. "Stop, laddie!" said he to Robert, "stop; we am gang back and seek the maister." So they retraced their steps. Happily, no farther explosion took place. They found the master lying on the heap of stones, stunned and bruised, with his hands severely burnt. They led him to the bottom of the shaft; and he afterward took care not to venture into the dangerous parts of the mine without the protection of a Geordy lamp.

The time that Robert spent at Killingworth as viewer's apprentice was of advantage both to his father and himself. The evenings were generally devoted to reading and study, the two from this time working together as friends and co-labourers. One who used to drop in at the cottage of an evening well remembers the animated and eager discussions which on some occasions took place, more especially with reference to the growing powers of the locomotive engine. The son was even more enthusiastic than his father on the subject. Robert would suggest numerous alterations and improvements in detail. His father, on the contrary, would offer every possible objection, defending the existing arrangements proud, nevertheless, of his son's suggestions, and often warmed and excited by his brilliant anticipations of the ultimate triumph of the locomotive.

These discussions probably had considerable influence in inducing Stephenson to take the next important step in the education of his son. Although Robert, who was only nineteen years of age, was doing well, and was certain, at the expiration of his apprenticeship, to rise to a higher position, his father was not satisfied with the amount of instruction which he had as yet given him.

Remembering the disadvantages under which he had himself laboured through his ignorance of practical chemistry during his investigations connected with the safety-lamp, more especially with reference to the properties of gas, as well as in the course of his experiments with the object of improving the locomotive engine, he determined to furnish his son with a better scientific culture than he had yet attained. He also believed that a proper training in technical science was indispensable to success in the higher walks of the engineer's profession, and he determined to give Robert the education, in a certain degree^ which he so much desired for himself. He would thus, he knew, secure an able coworker in the elaboration of the great ideas now looming before him, and with their united practical and scientific knowledge he probably felt that they would be equal to any enterprise.

He accordingly took Robert from his labours as under viewer in the West Moor Pit, and in October, 1822, sent him for a short course of instruction to the Edinburgh University. Robert was furnished with letters of introduction to several men of literary eminence in Edinburgh, his father's reputation in connection with the safety-lamp being of service to him in this respect. He lodged in Drummond Street, in the immediate vicinity of the college, and attended the Chemical Lectures of Dr. Hope, the Natural Philosophy Lectures of Sir John Leslie, and the Natural History Class of Professor Jameson. He also devoted several evenings in each week to the study of practical Chemistry under Dr. John Murray, himself one of the numerous designers of a safety-lamp.

He took careful notes of the lectures, which he copied out at night before he went to bed, so that, when he returned to Killingworth, he might read them over to his father. He afterward had the notes bound up and placed in his library.

Long years after, when conversing with Thomas Harrison, C.E., at his house in Gloucester Square, he rose from his seat and took down a volume from the shelves. Mr. Harrison observed that the book was in MS., neatly written out. "What have we here?" he asked. The answer was, "When I went to college, I knew the difficulty my father had in collecting the funds to send me there. Before going I studied short-hand; while at Edinburgh I took down verbatim every lecture; and in the evenings, before I went to bed, I transcribed those lectures word for word. You see the result in that range of books." From this it will be observed that the maxim of "Like father, like son," was one that strictly applied to the Stephensons.

Robert was not without the pleasure of social intercourse either during his stay at Edinburg. Among the letters of introduction which he took with him was one to Robert Bald, the mining engineer, which proved of much service to him. "I remember Mr. Bald very well," he said on one occasion, when recounting his reminiscences of his Edinburgh college life. "He introduced me to Dr. Hope, Dr. Murray, and several of the distinguished men of the North. Bald was the Buddie of Scotland. He knew my father from having visited the pits at Killingworth, with the object of describing the system of working them in his article intended for the 'Edinburg Encyclopaedia.'

A strange adventure befell that article before it appeared in print. Bald was living at Alloa when he wrote it, and when finished he sent it to Edinburgh by the hands of young Maxton, his nephew, whom he enjoined to take special care of it, and deliver it safely into the hands of the editor. The young man took passage for New Haven by. one of the little steamers which then plied on the Forth; but on the voyage down the Frith she struck upon a rock nearly opposite Queen's Ferry, and soon sank. When the accident happened, Maxton's whole concern was about his uncle's article. He durst not return to Alloa if he lost it, and he must not go on to Edinburg without it. So he desperately clung to the chimney chains with the paper parcel under his arm, while most of the other passengers were washed away and drowned. And there he continued to cling until rescued by some boatmen, parcel and all, after which he made his way to Edinburgh, and the article duly appeared." Returning to the subject of his life in Edinburgh, Robert continued: "Besides taking me with him to the meetings of the Royal and other societies, Mr. Bald introduced me to a very agreeable family, relatives of his own, at whose house I spent many pleasant evenings. It was there I met Jeannie M . She was a bonnie lass, and I, being young and susceptible, fairly fell in love with her. But, like most very early attachments, mine proved evanescent. Years passed, and I had all but forgotten Jeannie, when one day I received a letter from her, from which it appeared that she was in great distress through the ruin of her relatives. I sent her a sum of money, and continued to do so for several years; but the last remittance not being acknowledged, I directed my friend Sanderson to make inquiries. I afterward found that the money had reached her at Portobello just as she was dying, and so, poor thing, she had been unable to acknowledge it."

One of the practical sciences in the study of which Robert Stephenson took special interest while at Edinburgh was that of geology. The situation of the city, in the midst of a district of highly interesting geological formation, easily accessible to pedestrians, is indeed most favourable to the pursuit of such a study; and it was the practice of Professor Jameson frequently to head a band of his pupils, armed with hammers, chisels, and clinometers, and take them with him on a long ramble into the country, for the purpose of teaching them habits of observation, and reading to them from the open book of Nature itself. The professor was habitually grave and taciturn, but on such occasions he would relax and even become genial. For his own special science he had an almost engrossing enthusiasm, which on such occasions he did not fail to inspire into his pupils, who thus not only got their knowledge in the pleasantest possible way, but also fresh air and exercise in the midst of glorious scenery and in joyous company.

At the close of this session, the professor took with him a select body of his pupils on an excursion along the Great Glen of the Highlands, in the line of the Caledonian Canal, and Robert formed one of the party. They passed under the shadow of Ben Nevis, examined the famous old sea-margins known as the "parallel roads of Glen Roy," and extended their journey as far as Inverness, the professor teaching the young men, as they travelled, how to observe in a mountain country. Not long before his death, Robert Stephenson spoke in glowing terms of the great pleasure and benefit which he had derived from that interesting excursion. "I have travelled far, and enjoyed much," he said, "but that delightful botanical and geological tour I shall never forget; and I am just about to start in the Titania for a trip round the east coast of Scotland, returning south through the Caledonian Canal, to refresh myself with the recollection of that first and brightest tour of my life." Toward the end of the summer the young student returned to Killingworth to re-enter upon the active business of life. The six months' study had cost his father £80 a considerable sum to him in those days; but he was amply repaid by the additional scientific culture which his son had acquired, and the evidence of ability and industry which he was enabled to exhibit in a prize for mathematics which he had won at the University.

We may here add-that by this time George Stephenson, after remaining a widower fourteen years, had married, in 1820, his second wife, Elizabeth Hindmarsh, the daughter of a respectable farmer at Black Callerton. She was a woman of excellent character, sensible, and intelligent, and of a kindly and affectionate nature. George's son Robert, whom she loved as if he had been her own, to the last day of his life spoke of her in the highest terms; and it is unquestionable that she contributed in no small degree to the happiness of her husband's home.

The story was for some time current that, while living at Black Callerton in the capacity of engine-man, twenty years before, George had made love to Miss Hindmarsh, and, failing to obtain her hand, in despair he had married Paterson's servant. But the author has been assured by Mr. Thomas Hindmarsh, of Newcastle, the lady's brother, that the story was mere idle gossip, and altogether without foundation.

See Also

Loading...

Sources of Information

  1. The iron wheels of this engine were afterward removed, and replaced with wooden wheels, when it was again put upon the road, and continued working until quite recently. Its original cost was £750. It was sold in 1848 for £13, and broken up as old materials.